Interface for reading and writing to a GROMACS XTC file. This is a file-like objec that supports both reading and writing. It also supports the context manager ptorocol, so you can use it with the python ‘with’ statement.
The conventional units in the XTC file are nanometers and picoseconds. The format only supports saving coordinates, the time, the md step, and the unit cell parametrs (box vectors)
| Parameters: | filename : str 
 mode : {‘r’, ‘w’} 
 force_overwrite : bool 
 | 
|---|---|
| Other Parameters: | |
| min_chunk_size : int, default=100 
 chunk_size_multiplier : int, default=1.5 
 | |
See also
Examples
>>> # read the data from from an XTC file
>>> with XTCTrajectoryFile('traj.xtc') as f:
>>>    xyz, time, step, box = f.read()
>>> # write some random coordinates to an XTC file
>>> with XTCTrajectoryFile('output.xtc', 'w') as f:
>>>     f.write(np.random.randn(10,1,3))
x.__init__(...) initializes x; see help(type(x)) for signature
Methods
| close | Close the XTC file handle | 
| read([n_frames, stride, atom_indices]) | Read data from an XTC file | 
| seek | Move to a new file position | 
| tell | Current file position | 
| write(xyz[, time, step, box]) | Write data to an XTC file | 
Attributes
| distance_unit | 
Close the XTC file handle
Read data from an XTC file
| Parameters: | n_frames : int, None 
 stride : int, optional 
 atom_indices : array_like, optional 
 | 
|---|---|
| Returns: | xyz : np.ndarray, shape=(n_frames, n_atoms, 3), dtype=np.float32 
 time : np.ndarray, shape=(n_frames), dtype=np.float32 
 step : np.ndarray, shape=(n_frames), dtype=np.int32 
 box : np.ndarray, shape=(n_frames, 3, 3), dtype=np.float32 
 | 
Move to a new file position
| Parameters: | offset : int 
 whence : {0, 1, 2} 
 | 
|---|
Current file position
| Returns: | offset : int 
 | 
|---|
Write data to an XTC file
| Parameters: | xyz : np.ndarray, dtype=np.float32, shape=(n_frames, n_atoms, 3) 
 time : np.ndarray, dtype=float32, shape=(n_frames), optional 
 step : np.ndarray, dtype=int32, shape=(n_frames), optional 
 box : np.ndarray, dtype=float32, shape=(n_frames, 3, 3), optional 
 | 
|---|